Shirley High Curriculum Map	The Year 12 curriculum provides mathematics can be applied to how to present robust mathema	framework within which student odel situations mathematically us ical argument, language and proo	continue to study Mathematics ing algebra, calculus and other reas and create mathematical mode	yond GCSE level. Students will see resentations. Through the study of in order to problem solve.	how mathematical ideas are in Pure Mathematics, Statistics and	connected and how Mechanics students will learn
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Theme/Topic/skill:	Theme/Topic/Skill:	Theme/Topic/Skill:	Theme/Topic/Skill:	Theme/Topic/skill:	Theme/Topic/Skill:
	1(a) Algebraic expressions	4(a) Graphs and	7 (a) Algebraic methods	9(a) Trigonometric ratios	11(a) Vectors	13(a) Integration
	1(b) Data collection	3) Reptestaions data	5(b) Probability	7(b) Hypothesis testing	9 (b) Constant acceleration	11(b) Variable acceleration
	2(a) Quadratics	3(b) Repre	8(a) The binomial expansion	10(a) Trigonometric identities	12(a) Differentiation	14(a) Exponentials and
		5(a) Straight line graphs		and equations		logarithms
	2(b) Measures of location and spread	4(b) Correlation	6(b) Statistical distributions	8(b) Modelling in mechanics	10(b) Forces and motion	(R) Revision
	3(a) Equations and inequalities	6(a) Circles				(EOY) End of Year Assessment
Why Now?	1(a)	4(a)	(a)	9(a)	11(a)	13(a)
	This unit allows pupils to	Pupils build on their	Pupils learn how to factorise	Pupils revisit trigonometry.	Pupils build on their	Having learnt about
	transition from GCSE to	understanding of sketching	cubic expressions and		understanding of vectors from	differentiation pupils learn
	A-level.	and transforming graphs from GCSE level.	different methods of algebraic proof.	7 (b) Pupils learn how to perform	GCSE level as they learn about using trigonometry with	about its inverse operation: integration.
	1(b)			one-tailed and two-tailed	vectors.	
	Pupils deepen their	3 (b)		hypothesis testing for the	This unit links with the unit on	11(b)
	understanding of how data is collected from their	Pupils now revisit how to represent data.	Pupils revisit how to calculate probabilities using Venn	proportion of the binomial distribution.	mathematical modelling in mechanics as pupils now know	Having learnt about constant acceleration (and
	understanding at GCSE level.		diagrams and tree diagrams.		the difference between scalar and vector quantities.	differentiation) pupils now learn about variable
	2(a)	Continuing the theme of	8(a)	Continuing the theme of		acceleration.
	Pupils deepen their	graphs pupils build on their	Leading on from learning more	trigonometry pupils learn how	9(b)	
	understanding of quadratic equations and functions from	understanding of straight-line graphs from GCSE level.	about factorising, pupils now learn how to expand any	to solve more complicated trigonometric equations	This unit introduces constant acceleration formulae and	14(a) Pupils are introduced to
	their understanding at GCSE		number of brackets using the	through using trigonometric	how to use them to solve	exponentials and logarithms
	level.	4(b) Continuing the theme of	binomial expansion.	identities.	problems in mechanics.	and can understand the relationship between them
	2(b)	representing and interpreting	6(b)	8 (b)	12(a)	having learnt differentiation
	Having a better understanding of how data is collected pupils now learn how to interpret	data, pupils revisit scatter graphs but learn about regression as opposed to a line	Continuing the theme of probability, pupils learn about probability distributions.	Pupils learn how to construct a model in relation to mechanics.	This unit introduces differentiation to pupils.	and integration. ${ }_{\text {(R) }}$
	data in new ways such as	of best fit.	This unit will also link well with		10(b)	Having taught all content
	calculating variance and standard deviation.	This unit is will also link well with the unit on straight-line	the unit on binomial expansion learnt in pure.		Now equipped with the ability to use constant acceleration	pupils now need time to improve their understanding
		graphs learnt in pure.			formulae pupils are introduced	of topics that they have
	${ }^{3(a)}$)				to force diagrams and	identified as a weakness
	Now with an improved	6(a)			Newton's laws.	through assessment and reflection.
	pupils can improve their	graphs pupils build on their				This is also an opportunity to
	understanding of solving equations and inequalities	understanding of coordinate geometry in the (x, y) plane				consolidate the mentality of a pupil taking ownership of their
	algebraically and graphically.	from GCSE level.				learning in such a way that
						maximises productivity in time spent revising.
						This summarises pupils' current progress whilst
						providing formative data on what topics pupils must
						continue to develop in the following academic year.
						The data will also be used for teachers to reflect on their
						own practice in regard to the
Fundamental Concepts	(a) Algebra and functions (b) Statistical sampling Data presentation and interpretation	(a) Algebra and functions Coordinate geometry in the (x , y) plane (b) Data presentation and interpretation	(a) Algebra and functions Proof Sequence and series (b) Probability Statistical distributions	(a) Trigonometry (b) Statistical hypothesis testing Quantities and units in mechanics	(a) Vectors Differentiation (b) Kinematics Forces and Newton's laws	(a) Proof Algebra and functions Coordinate geometry in the (x, y) plane Sequences and series Trigonometry Exponentials and logarithms Differentiation Integration Numerical Methods Vectors (b) Statistical sampling Data presentation and interpretation Probability Statistical distributions Statistical hypothesis testing Quantities and units in mechanics Kinematics Forces and Newton's laws Moments

Students will learn about ...	1(a) Multiplying and dividing integer powers. Expanding a single term over brackets and collecting like terms. Expanding the product of two or three expressions. Factorising linear, quadratic and simple cubic expressions. Knowing and using the laws of indices. Simplifying and using the rules of surds. Rationalising denominators. 1(b) Understanding 'population', 'sample' and 'census', and commenting on the advantages and disadvantages of each. Understanding the advantages and disadvantages of simple random sampling, systematic sampling, stratified sampling, quota sampling and opportunity sampling. Defining qualitative, quantitative, discrete and continuous data, and understanding grouped data. Understanding the large data set and how to collect data from it, identify types of data and calculate simple statistics. 2(a) Solving quadratic equations using factorisation, the quadratic formula and completing the square. Reading and using $f(x)$ notation when working with functions. Sketching the graph and finding the turning point of a quadratic function. Finding and interpreting the discriminant of a quadratic expression. Using and applying models that involve quadratic functions. 2(b) Calculating measures of central tendency such as the mean, median and mode. Calculating measures of location such as percentiles and deciles. Calculating measures of spread such as range, interquartile range and interpercentile range. Calculating variance and standard deviation. Understanding and using coding. 3(a) Solving linear simultaneous equations using elimination or substitution. Solving simultaneous equations: one linear and one quadratic. Interpreting algebraic solutions of equations graphically. Solving linear inequalities. Solving quadratic inequalities. Interpreting inequalities graphically. Representing linear and quadratic inequalities graphically.	4(a) Sketching cubic graphs. Sketching quartic graphs. Sketching reciprocal graphs of the form $y=\frac{a}{x} \text { and } y=\frac{a}{x^{2}}$ Using intersection points of graphs to solve equations. Translating graphs. Stretching graphs. Transforming graphs of unfamiliar functions. 3(b) Identifying outliers in data sets. Drawing and interpreting box plots. Drawing and interpreting cumulative frequency diagrams. Drawing and interpreting histograms. Comparing two data sets. 5(a) Calculating the gradient of a line joining a pair of points. Understanding the link between the equation of a line, and its gradient and intercept. Finding the equation of a line given the gradient and one point on the line. Finding the equation of a line given two points on the line. Finding the point of intersection for a pair of straight lines. Knowing and using the rules for parallel and perpendicular gradients. Solving length and area problems on coordinate grids. Using straight line graphs to construct mathematical models. 4(b) Drawing and interpreting scatter diagrams for bivariate data. Interpreting correlation and understanding that it does not imply causation. Interpreting the coefficients of a regression line equation for bivariate data. Understanding when you can use a regression line to make predictions. 6(a) Finding the midpoint of a line segment. Finding the equation of the perpendicular bisector to a line segment. Knowing how to find the equation of a circle. Solving geometric problems involving straight lines and circles. Using circle properties to solve problems on coordinate grids. Finding the angle in a semicircle and solving other problems involving circles and triangles.	7(a) Cancelling factors in algebraic fractions. Dividing a polynomial by a linear expression. Using the factor theorem to factorise a cubic expression. Constructing mathematical proofs using algebra. Using proof by exhaustion and disproof by counterexample. 5(b) Calculating probabilities for single events. Drawing and interpreting Venn diagrams. Understanding mutually exclusive and independent events and determining whether two events are independent. Using and understanding tree diagrams. 8(a) Using Pascal's triangle to identify binomial coefficients and use them to expand simple binomial expressions. Using combinations and factorial notation. Using the binomial expansion to expand brackets. Finding individual coefficients in a binomial expansion. Making approximations using the binomial expansion. 6(b) Understanding and using simple discrete probability distributions including the discrete uniform distribution. Understanding the binomial distribution as a model and commenting on appropriateness. Calculating individual probabilities for the binomial distribution. Calculating cumulative probabilities for the binomial distribution.	9(a) Using the cosine rule to find a missing side or angle. Using the sine rule to find a missing side or angle. Finding the area of a triangle using an appropriate formula. Solving problems involving triangles. Sketching the graphs of the sine, cosine and tangent functions. Sketching simple transformations of trigonometric graphs. 7(b) Understanding the language and concept of hypothesis testing. Understanding that a sample is used to make an inference about a population. Finding critical values of a binomial distribution using tables. Carrying out a one-tailed test for the proportion of the binomial distribution and interpreting the results. Carrying out a two-tailed test for the proportion of the binomial distribution and interpreting the results. 10(a) Calculating the sine, cosine and tangent of angle. Knowing the exact trigonometric ratios for 30°, 40° and 60°. Knowing and using the relationships $\tan \tan \theta \equiv \frac{\sin \sin \theta}{\cos \cos \theta}$ and $\sin ^{2} \theta+\cos ^{2} \theta \equiv 1$. Solving simple trigonometric equations of the forms $\sin \sin \theta=k, \cos \cos \theta=k$ and $\tan \tan \theta=k$. Solving more complicated trigonometric equations of the forms $\sin \sin n \theta=k$ and $\sin \sin (\theta \pm \alpha)=k$ and equivalent equations involving cos and tan. Solving trigonometric equations that produce quadratics. 8(b) Understanding how the concept of a mathematical model applies to mechanics. Understanding and being able to apply some of the common assumptions used in mechanical models. Knowing International System of Units (SI units) for quantities and derived quantities used in mechanics. Knowing the difference between scalar and vector quantities.	11(a) Using vectors in two dimensions. Using column vectors and carrying out arithmetic operations on vectors. Calculating the magnitude and direction of a vector. Understanding and using position vectors. Using vectors to solve geometric problems. Understanding vector magnitude and using vectors in speed and distance calculations. Using vectors to solve problems in context. 9(b) Understanding and interpreting displacement-time graphs. Understanding and interpreting velocity-time graphs. Deriving the constant acceleration formulae and using them to solve problems. Using the constant acceleration formulae to solve problems involving vertical motion under gravity. 12(a) Finding the derivative, $f^{\prime}(x)$ or $\frac{d y}{d x}$, of a simple function. Using the derivative to solve problems involving gradients, tangents and normals. Identifying increasing and decreasing functions. Finding the second order derivative, $f^{\prime \prime}(x)$ or $\frac{d^{2} y}{d x^{2}}$, of a simple function. Finding stationary points of functions and determining their nature. Sketching the gradient function of a given function. Modelling real-life situations with differentiation. 10(b) Drawing force diagrams and calculating resultant forces. Understanding and using Newton's second law. Applying Newton's second law to vector forces acceleration. Understanding and using Newton's third law. Solving problems involving connected particles.	13(a) Finding y given $\frac{d y}{d x}$ for x^{n}. Integrating polynomials. Finding $f(x)$, given $f^{\prime}(x)$ and a point on the curve. Evaluating a definite integral. Finding the area bounded by a curve and the x-axis. Finding areas bounded by curves and straight lines. 11(b) Understanding that displacement, velocity and acceleration may be given as functions of time. Using differentiation to solve kinematics problems. Using calculus to solve problems involving maxima and minima. Using integration to solve kinematics problems. Using calculus to derive constant acceleration formulae. 14(a) Sketching graphs of the form $y=a^{x}, y=e^{x}$, and transformations of these graphs. Differentiating $e^{k x}$ and understanding why this result is important. Using and interpreting models that use exponential functions. Recognising the relationship between exponents and logarithms. Recalling and applying the laws of logarithms. Solving equations of the form $a^{x}=b$. Describing and using the natural logarithm function. Using logarithms to estimate the values of constants in non-linear models. (R) Reflecting on prior learning in order to identify personal strengths and weaknesses. Revising strategically in order to make the most progress from their current level of understanding. (EoY) What they have learnt, mastered and are yet to fully understand from the content covered throughout the year. How they can improve on their current attainment by identifying topics that lost them marks under assessment.
Language for Life (Key terms/Vocabulary)	1(a) Base, index, power, exponent, simplify, indices, expand, product, gather like terms, factor, factorise, coefficient, constant, variable, unknown, difference of two squares, rational, irrational, reciprocal, surd, rationalise, denominator, numerator, rearrange. 1(b) Population, census, sample, sampling unit, sampling frame, representative, bias, random sample, lottery sample, systematic sample, stratified sample, stratum, strata, sample size, quota sampling, opportunity (convenience) sampling, variables, data, quantitative, qualitative, continuous, discrete, class, class boundaries, maximum, minimum, class width, trace, knot (kn), oktas, decametres (Dm), hectopascals (hPa), hemisphere. 2(a) Quadratic, expression, equation, coefficient, variable,	4(a) Function, cubic, root, shape of graph, point of intersection, quartic, non-zero, coefficient, reciprocal, asymptote, translation, vector, stretch, scale factor. 3(b) Outlier, lower quartile, upper quartile, anomaly, cleaning data, box plot, cumulative frequency, interquartile range, interpercentile range, histogram, frequency density, class width, frequency polygon, comparing data, measure of location, measure of spread. 5(a) Gradient m, y-intercept c, linear, parallel, perpendicular, direct proportion, linear model, assumption. 4(b) Bivariate, variable, explanatory variable (independent), response variable (dependent), correlation, positive, negative, weak, strong, causal relationship, line of best fit,	7(a) Factorise, common factor, cancel, simplify, reduce, polynomial, quotient, factor theorem, proof, conjecture, theorem, statement of proof, deduction, demonstration, identity, expression, exhaustion, disprove, counter-example. 5(b) Experiment, outcome, event, sample space, Venn diagram, intersection, union, complement, mutually exclusive, independent. 8(a) Pascal's triangle, coefficient, expansion, factorial, n choose $r n C_{r^{\prime}}$ binomial expansion, set of natural numbers N, binomial estimation. 6(b) Random variable, sample space, discrete, probability distribution, probability mass function, discrete uniform distribution, binomial distribution, number of trials n , index, probability of success	9(a) Cosine rule, corresponding, Sine rule, periodic function, interval, symmetry, maximum, minimum, asymptote, undefined. 7(b) Hypothesis, hypotheses, test statistic, null hypothesis, alternative hypothesis, population parameter, one-tailed test, two-tailed test, significance level, critical value, critical region, acceptance region, actual significance level, observed value, expected outcome. 10(a) Unit circle, quadrant, anticlockwise, positive x-axis, clockwise, trigonometric ratio, CAST diagram, identity, principal value, inverse, arccos $\cos ^{-1}, \arcsin \sin ^{-1}, \arctan$ $\tan ^{-1}$. 8(b) Model, particle, rod, lamina, uniform body, centre of mass, light object, inextensible string, smooth	11(a) Vector, magnitude, direction, directed line segment, resultant, vector sum, triangle law, displacement, column vector, unit vector, magnitude-direction form, position vector. 9(b) Displacement s, time, velocity, gradient, stationary, acceleration, constant, distance, area, initial velocity u , final velocity v, acceleration a, time t, decelerating, gravity, time of flight, speed of projection. 12(a) Curve, tangent, gradient function, derivative, coefficient, index, normal, perpendicular, increasing, decreasing, interval, derivative, second derivative, rate of change of gradient, stationary point, zero gradient, local maximum, local minimum, point of inflection, maxima, minima, asymptote.	13(a) Integration, constant of integration, coefficient, index, indefinite, definite, limit, value, area, curve. 11(b) Acceleration, gradient, velocity-time graph, increasing, decreasing, function of time, displacement, differentiation, maxima, minima, velocity. 14(a) Exponential, function, index, power, exponent, initial value, logarithm, natural logarithm. (R) Personal learning checklist, identify, strategic, ownership, reflection, development, formative, growth mind set. (EoY) Summative, current working grade, formative reflection, development, growth mind set.

	constant, factorise, solution, root, repeated root, completing the square, function $f(x)$, domain, range, member \in, set of real numbers R, parabola, turning point, minimum, maximum, symmetry, discriminant, distinct real roots, model. 2(b) Measure of location, quartile, percentile, lower quartile Q_{1}, upper quartile $Q_{3^{\prime}}$ maximum, minimum, measure of central tendency, mean, median Q_{2}, mode, modal class, bimodal, quantitative, qualitative, discrete, continuous, interpolation, extrapolation, measure of spread, range, interquartile range (IQR), interpercentile range, variance σ^{2}, standard deviation σ, summary statistic, coding, original data, coded data. 3(a) Simultaneous, equation, variable, unknown, eliminate, substitute, isolate, solve, point of intersection, discriminant, inequality, set, greater than, less than, sketch, satisfy, region, inclusive, exclusive.	least squares regression line, coefficient, gradient, interpolation, extrapolation. 6(a) Midpoint, perpendicular, bisect, line segment, circumcentre, centre, radius, complete the square, point of intersection, tangent, chord, circumcircle.	p, parameter, cumulative probability function, cumulative distribution.	surface, smooth surface, rough surface, wire, smooth and light pulley, bead, peg, air resistance, gravity, International System of Units (SI), mass, length, displacement, time, derived unit, compound unit, speed, velocity, acceleration, weight, force, force diagram, normal reaction, friction, tension, thrust, compression, buoyancy, air resistance, vector, magnitude, direction, scalar.	10(b) Force diagram, Newton's second law $F=m a$, equation of motion, object, rest, constant velocity, resultant force, column vector, position vector, gravity, connected particle.	
Extended writing Opportunities	After each end of unit assessment pupils write a reflection based on the assessment.	After each end of unit assessment pupils write a reflection based on the assessment.	After each end of unit assessment pupils write a reflection based on the assessment.	After each end of unit assessment pupils write a reflection based on the assessment.	After each end of unit assessment pupils write a reflection based on the assessment.	After the end of year assessment pupils write a reflection based on the assessment.
Maths Across the Curriculum	(a) Functions are used in subjects such as computer science and programming. (b) Pupils learn about sampling methods that are used in other subjects such as Psychology. Pupils learn about the large data set which has links to geography.	(a) Linear modelling is used in subjects such as geography. (b) Data analysis is used in several subject such as biology, psychology, sociology and geography.	(a) Disproving through counterexample is also used in philosophy. Pascal's triangle and the binomial theorem are also used in chemistry. (b) Binomial distributions are used in research methodology in subjects such as biology.	(a) Trigonometry is used heavily in physics when calculating components of forces. (b) Hypothesis testing is used in subjects such as biology, sociology and psychology.	(a) Vectors are used in physics when working with forces. (b) Constant acceleration formulae is used extensively in physics.	(a) Logarithms are used in subjects such as biology, chemistry and physics. (b) Pupils learn the relationship between displacement, velocity and acceleration as a function of time which is also used in physics.
Links to careers/ aspirations	(a) Pupils learn the fundamental concepts of algebra that are used in careers involving astrology, architecture, computer engineering, market research analysis, finance and economy. (b) Sampling populations is a key statistical skill used across many fields of work such as pharmaceuticals, community management and manufacturing.	(a) Linear modelling is used in careers in marketing analysis, business analysis, data science and statistics. (b) Data analysis is used in roles such as data scientist, data analyst, business analyst, product manager and digital marketer.	(a) Pascal's triangle is used in careers in architecture, graphic design and finance. (b) Probability distributions are used in careers involving research analysis across a range of fields such as crime.	(a) Trigonometry is used in oceanography in calculating the height of tides in oceans. The sine and cosine functions are fundamental to the theory of periodic functions, those that describe the sound and light waves. (b) Hypothesis testing is used in careers such as manufacturing to evaluate a manufacturing process.	(a) Calculus is used in careers such as aerospace engineering and software development. (b) Pupils learn about Newton's laws of motions that are used by engineers, astronauts and physicists.	(a) Logarithms are used in careers involving medicine, archaeology and actuarial science. (b) Kinematics is mechanical, automobile and electrical engineering.
Cultural Capital	(a) Pupils learn about quadratic functions that are used to model projectile motion. This provides students with a better understanding of how, in wars, armies would know how to strategically position themselves in order to attack the opposition successfully from as far away as possible. (b) Pupils learn about different methods of sampling and the occurrence of bias. This empowers pupils to question the validity of research claims presented across social media platforms.	(a) Understanding graphs can aid pupils in understanding information relayed to them from retailers or price comparison sites. Allowing them to make better informed decisions. (b) Pupils learn about the advantages and disadvantages of different measures of central tendency which allows pupils to identify improper use of such measures in statistics posted on social media.	(a) Counter-examples will enable pupils to improve their ability to debate. (b) Venn diagrams are often used in decision making where there is a need to see a visual comparison of the advantages, or disadvantages or multiple options.	(a) Pupils are encouraged to choose the most efficient method when solving triangle problems, which helps pupils to develop their efficiency and time management skills. (b) Mathematical modelling teaches pupils how to simplify a problem in order to find a solution which can be used as a method for problem resolution in everyday life.	(a) Rates of change are crucial in forecasting. Being able to calculate the rate of change from real life graphs allows pupils to better understand the references to the rate of infection (r) in the global pandemic and the subsequent decisions made because of its value. (b) Pupils learn about Newton's laws of motion which broadens their understanding of the physical world around them.	(a) Pupils learn about exponential functions and their graphs, which provides pupils with a better understanding of why exponential growth is so significant, whether it be for a company's net worth or an infection rate in a global pandemic. (b) Pupils learn about the difference between velocity and acceleration which are commonly confused as being the same.
Practical Application of Skills	(a) Pupils can use their understanding of solving simultaneous equations to identify the price of two items if two friends have both purchased varying amounts of the items but made contactless payment and did not opt for a receipt. (b) Pupils can decipher whether a given statistic witnessed in advertising is misleading. Pupils can also offer their understanding of reducing bias when performing data collection when applying for part time employment with companies looking to carry out a survey.	(a) Pupils can compare two separate price plans for a product, such as a mobile phone contracts and the cost for making calls by plotting the two plans as graphs. (b) Understanding that correlation does not imply causation gives pupils a critical eye when deciphering if claims of relationships between two variables that are made in social media are credible.	(a) Pupils can disregard claims made in advertising and social media if they can provide a counterexample. (b) Pupils can use their understanding of Venn diagrams to help in decision making, such as which university should be a first choice.	(a) Pupils can use the area sine rule to find the area of triangles when they do not know the height of a triangle. For example, if a pupil were to paint a mural using a collage of equilateral triangles, they could find the total area of the triangles, and thus the amount of paint required, without taking any measurements. (b) Planning journeys can be overwhelming due to the various factors that must be considered; however, a pupil could make the modelling assumption that all forms of transport are not delayed in order to find the minimum journey time required. Once a minimum journey time has been calculated adding time to allow for delays is more manageable.	(a) Pupils can use differentiation to inform decision making regarding investments by calculating the rate of change of a stock's worth. (b) Pupils can save time creating displays involving two items balancing against one another by considering Newton's second and third laws of motion which will lead them to consider the weight of the items before attempting to balance.	(a) Pupils learn about the number e which can help them to calculate the maximum growth over a given time. This enables pupils to predict the maximum growth of stock shares of a company for a specific period. (b) Pupils can use constant acceleration formulae to calculate the acceleration of their car. (R) Pupils learn how to organise their time and prioritise tasks due to urgency and importance through revision.

