

	Understanding mappings and functions and using domain and range. Combining two or more functions to make a composite function. Knowing how to find the inverse of a function graphically and algebraically. Sketching the graphs of the modulus functions $y=\|f(x)\|$ and $y=f(\|x\|)$. Applying a combination of two (or more) transformations to the same curve. Transforming the modulus function. 2(b) Understanding set notation in probability. Understanding conditional probability. Solving conditional probability problems using two-way tables and Venn diagrams. Using probability formulae to solve problems. Solving conditional probability using tree diagrams. 3(a) Finding the nth term of an arithmetic sequence. Proving and using the formula for the sum of the first n terms of an arithmetic series. Finding the nth term of a geometric sequence. Proving and using the formula for the sum of a finite geometric series. Proving and using the formula for the sum to infinity of a convergent geometric series. Using sigma notation to describe series. Generating sequences from recurrence relations. Modelling real-life situations with sequences and series.	Knowing exact values of angles measured in radians. Finding an arc length using radians. Finding areas of sectors and segments using radians. Solving trigonometric equations in radians. Using approximate trigonometric values when θ is small. 4(b) Resolving forces into components. Using the triangle law to find a resultant force. Solving problems involving smooth or rough inclined planes. Understanding friction and the coefficient of friction. Using $F \leq \mu R$. 6(a) Understanding the definitions of secant, cosecant and cotangent and their relationship to cosine, sine and tangent. Understanding the graphs of secant, cosecant and cotangent and their domain and range. Simplifying expressions, proving simple identities and solving equations involving secant, cosecant and cotangent. Proving and using $\begin{aligned} & \sec ^{2} x \equiv 1+\tan ^{2} x \text { and } \\ & \operatorname{cosec}^{2} x \equiv 1+\cot ^{2} x . \end{aligned}$ Understanding and using inverse trigonometric functions and their domain and ranges.	Converting parametric equations into Cartesian form by substitution. Converting parametric equations into Cartesian form using trigonometric identities. Understanding and using parametric equations of curves and sketching parametric curves. Solving coordinate geometry problems involving parametric equations. Using parametric equations in modelling in a variety of contexts. 6(b) Understanding the normal distribution and the characteristics of a normal distribution curve. Finding percentage points on a standard normal curve. Calculating values on a standard normal curve. Finding unknown means and/or standard deviations for a normal distribution. Approximating a binomial distribution using a normal distribution. Selecting appropriate distributions and solving real-life problems in context. Carrying out a hypothesis test for the mean of a normal distribution.	require the resolution of forces. 10(a) Locating roots of $f(x)=0$ by considering changes of sign. Using iteration to find an approximation to the root of the equation $f(x)=0$. Using the Newton-Raphson procedure to find approximations to the solutions of equations of the form $f(x)=0$. Using numerical methods to solve problems in context. 8(b) Working with vectors for displacement, velocity and acceleration when using the vector equations of motion. Using calculus with harder functions of time involving variable acceleration. Differentiating and integrating vectors with respect to time.	(R) Reflecting on prior learning to identify personal strengths and weaknesses. Revising strategically to make the most progress from their current level of understanding.	
Language for Life (Key terms/Vocabulary)	1(a) Contradiction, proof, rational, irrational, common factor, cancel, reduce, reciprocal, common denominator, equating coefficients, substitution, linear factor, degree, improper, divisor. 1(b) Linear relationship, logarithm, constant, product moment correlation coefficient, regression, sample, population, hypothesis, hypotheses, one-tailed, two-tailed, significance level, critical value, critical region. 2(a) Modulus, sketch, argument, function, mapping, input, output, domain, range, one-to-one, one-to-many, many-to-one, piecewise-defined, composite function, inverse, translation, refection, stretch, vector, scale factor. 2(b) Sample space, set, intersection, union, complement, conditional, independent, event, restricted sample space, mutually exclusive. 3(a) Arithmetic, sequence, progression, increasing, decreasing, first term, common difference, last term, series, sum, geometric, common ratio, geometric, limit, alternating, divergent, convergent, sum to infinity, sigma \sum, recurrence relation, periodic, period, cycle.	4(a) Term, index, coefficient, finite, infinite, convergent. 3(b) Moment, clockwise, anticlockwise, perpendicular distance, rigid body, resultant, coplanar, equilibrium, uniform, non-uniform, centre of mass, point of tilting. 5(a) Radian, angle unit, pi, CAST diagram, arc length, minor, major, segment, sector, approximation. 4(b) Direction of motion, component, angle, resolve, triangle law, maximum, limiting value, coefficient of friction, normal reaction, gravity. 6(a) Reciprocal, function, secant, cosecant, cotangent, symmetry, period, asymptote, domain, range, identity, inverse, arcsin, arccos, arctan, principal value.	7(a) Compound-angle, identity, simplify, reduce, cancel, coefficient. 5(b) Horizontal, vertical, initial velocity, final velocity, displacement, acceleration, time, time of flight, angle of projection, component, resolve, greatest height, range, trajectory, parabola, constant velocity. 8(a) Parametric, Cartesian, parameter, time, substitute, eliminate, domain, range, point of intersection. 6(b) Continuous random variable, continuous probability distribution, parameter, mean μ, variance σ^{2}, standard deviation σ, probability, area, symmetrical, asymptote, point of inflection, cumulative distribution, inverse normal distribution, standardise, normal random variable, coefficient, approximate, n large, p close to 0.5 , continuity correction, sample size, population, hypothesis, hypotheses, sample mean, critical region, critical value, one-tailed, two-tailed, significance level, observed value.	9(a) Limit, first principles, function, with respect to, chain rule, product rule, quotient rule, implicit, explicit, second derivative, concave, convex, point of inflection, change of sign. 7(b) Static particle, equilibrium, at rest, resultant force, resultant moment, component, weight, tension, pulley, smooth, limiting equilibrium, maximum, coefficient of friction, rigid body, direction of motion, rough plane, connected particles. 10(a) Function, continuous, interval, root, iteration, iterative method, converge, root, staircase diagram, cobweb diagram, diverge, convergent, divergent, Newton-Raphson method. 8(b) Vector equations of motion, position vector, displacement, velocity, acceleration, time, constant, variable, differentiate, initial condition, boundary condition, magnitude, distance.	11(a) Integral, derivative, inverse, identity, reverse chain rule, integration by substitution, integration by parts, limit, partial fraction, bounded, curve, area, trapezium rule, differential equations, separating variables, function, general solution, particular solution, boundary condition, family of solutions. 12(a) Distance, points, unit vector, column vector, scalar, compare coefficients, coplanar vectors. (R) Personal learning checklist, identify, strategic, ownership, reflection, development, formative, growth mind set.	N/A
Extended writing Opportunities	After each end of unit assessment pupils write a reflection based on the assessment.	After an end of unit assessment or PPEs pupils write a reflection based on the assessment/PPEs.	After an end of unit assessment or PPEs pupils write a reflection based on the assessment/PPEs.	After an end of unit assessment or PPEs pupils write a reflection based on the assessment/PPEs.	After an end of unit assessment or PPEs pupils write a reflection based on the assessment/PPEs.	N/A
Maths Across the Curriculum	(a) Functions are used in subjects such as computer science and programming. (b) Regression and correlation are used in subjects such as geography, psychology and sociology.	(a) Radians are used in computer science. (b) Moments are used heavily in physics.	(a) Parametric equations are used in chemistry and physics. (b) The normal distribution is used in subjects such as geography, psychology and sociology.	(a) Differentiation is used in chemistry (not to be confused with formation of derivative products from a chemical species) as well as physics. (b) Kinematics is an essential component of the physics course.	(a) Vectors are used in physics when working with forces.	N/A

Links to careers/ aspirations	(a) Sequences and series are used in careers in finance, banking and investments. (b) Hypothesis testing is used in careers such as manufacturing to evaluate a manufacturing process.	(a) Radians is the main unit of measurement using in game development. (b) Forces and motion are used in careers involving game development and game technology development. [Video]	(a) Trigonometry is used in oceanography in calculating the height of tides in oceans. The sine and cosine functions are fundamental to the theory of periodic functions, those that describe the sound and light waves. (b) The normal distribution is used in careers that involve quality control, cost management and business operations.	(a) Calculus is used in careers such as aerospace engineering and software development. (b) Kinematics is mechanical, automobile and electrical engineering.	(a) Integration is used in careers involving civil engineering, computer animation and game development and economics.	N/A
Cultural Capital	(a) Series can be used to make calculations over time such as calculating the interest made over n years if x amount of money was invested into a savings account. (b) Venn diagrams are often used in decision making where there is a need to see a visual comparison of the advantages, or disadvantages or multiple options.	(a) Radians can be used to simplify the method of finding an arc length, this teaches pupils to consider different methods and approaches to increase efficiency instead of using the most common method by default. (b) Pupils solve problems using Newton's laws of motion which broadens their understanding of the physical world around them.	(a) Pupils learn how trigonometry can be used to model many real-life situations from the temperature of an oven or the electric field strength of a microwave to the price of stock within a training window. (b) The normal distribution teaches pupils to pay more attention to values grouped around a central value rather than extreme values. This can be adopted by pupils in every-day life as they can identify areas of required development more efficiently.	(a) Rates of change are crucial in forecasting. Being able to calculate the rate of change from real life graphs allows pupils to better understand the references to the rate of infection (r) in the global pandemic and the subsequent decisions made because of its value. (b) Mathematical modelling teaches pupils how to simplify a problem to find a solution which can be used as a method for problem resolution in everyday life.	(a) Position vectors are a measurement from the origin, this concept can be adopted by pupils to measure improvement or development by comparing their current progress with their starting point.	N/A
Practical Application of Skills	(a) Pupils can use their understanding of composite functions to calculate the discount in pounds of an item on sale in a country with a different currency. (b) Pupils can use their understanding of Venn diagrams to help in decision making, such as which university should be a first choice.	(a) Pupils can use the binomial coefficient to quickly identify how many outcomes will lead to them winning in a game. (b) Moments can be used by pupils to loosen tight nuts when performing DIY as they will be able to identify the need for a longer tool to increase the turning effect.	(a) Pupils can use a trigonometric model for the price of a stock within a trading window to help inform a decision to buy stock. (b) Pupils can use a normal distribution to test whether they are improving on their times running 5 km whilst exercising.	(a) Pupils can use differentiation to inform decision making regarding investments by calculating the rate of change of a stock's worth. (b) Pupils could use a mathematical model to calculate the tension in a wire or rope that they have tied between two trees to ensure the wire/rope is strong enough to safely hold their weight.	(a) Pupils can use integration to find the volume of an irregular shaped swimming pool to work out how long is needed to fill it with water. (R) Pupils learn how to organise their time and prioritise tasks due to urgency and importance through revision.	N/A

