Shirley High Curriculum Map	The year 10 curriculum builds on the knowledge and skills students have acquired in Key Stage 3. Examination technique is introduced, and students now focus on using their ability to communicate and reason Mathematically, developed at Key Stage 3, to problem solve using a wide array of techniques learnt from the six key concepts of Mathematics at Key Stage 4: Algebra, Geometry and Measures, Number, Ratio, Proportion and Rates of Change, Probability and Statistics.					
	Autumn 1	Autumn 2	Spring 1	Spring 2	Summer 1	Summer 2
	Theme/Topic/skill:	Theme/Topic/skill:	Theme/Topic/skill:	Theme/Topic//kill:	Theme/Topi//kill:	Theme/Topic/skill:
	(1) Number (2) Algebra (3) Graphs, tables and charts	(4) Fractions and percentages. (5) Equations, inequalities and sequences	(6) Angles (7) Averages and range	(8) Perimeter, area and volume 1 (9) Graphs (10) Transformations	(11) Ratio and proportion (12) Right-angled triangles (13) Probability	(14) Multiplicative reasoning (15) Constructions, loci and bearings (R) Revision (EoY) End of Year Assessment
Why Now?	(1) Pupils consolidate learning from KS3 on some fundamental topics within Number. Some of the key skills in this unit will be used in all units. (2) Pupils consolidate learning from KS3 on some fundamental topics within Algebra. Some of the key skills in this unit will be used in all units. (3) Pupils consolidate learning from KS3 whilst being introduced to exam technique.	(4) This unit builds on learning from unit 1. Problem solving questions can also be accessed using skills from unit 2. (5) Pupils consolidate learning from KS3 whilst being introduced to exam technique. Problem solving questions can also be accessed using skills from unit 2.	(6) Pupils apply their understanding from units 1,2 and 5 to geometric problems. (7) Pupils consolidate learning from KS3 whilst being introduced to exam technique. Problem solving questions can also be accessed using skills from unit 2.	(8) Pupils consolidate learning from KS3 focusing on exam technique and problem solving. (9) Pupils see the graphical representation of concepts seen in unit 5 . (10) Pupils cover the GCSE content for transformations in this unit with a focus on exam technique.	(11) This unit builds upon unit 4 and leads on from content in unit 10. Problem solving questions may involve content from units such as units 5 and 6. (12) This unit builds upon unit 6 . Problem solving questions may involve content from units such as units 5, 8 and 11 . (13) Pupils cover the GCSE content for probability in this unit. Skills from unit 1 will enable pupils to execute calculations, whilst content from units 5 and 11 will feature in problem solving questions.	(14) This unit builds on prior knowledge from units 8, 10 and 11. Problem solving questions will require recall from units 4 and 5 . (15) Pupils build on their understanding from KS3. Problem solving questions will involve using understanding from units 6 and 12 .
Fundamental Concepts	Number Algebra Statistics	Number Algebra	Geometry and measures Statistics	Geometry and measures Algebra	Ratio, proportion and rates of change Geometry and measures Probability	Number Algebra Ratio, proportion and rates of change Geometry and measures Probability Statistics
Students will learn about ...	(1) Applying system listing strategies. Using priority of operations with positive and negative numbers. Simplifying calculations by cancelling. Using inverse operations. Rounding measurements to one decimal place. Multiplying decimal numbers. Multiplying decimals using the grid method. Dividing decimal numbers. Converting metric measures. Writing decimal numbers of millions. Rounding to a given number of significant figures. Estimating answers to calculations. Using one calculation to find the answer to another. Recognising two-digit prime numbers. Finding factors and multiples of numbers. Finding common factors and common multiples of numbers. Finding the HCF and LCM of two numbers by listing. Finding square roots and cube roots. Recognising powers of 2, 3, 4 and 5. Understanding surd notation on a calculator. Using index notation for powers of 10 . Using index notation in calculations. Using the laws of indices. Writing a number as a product of its prime factors. Using prime factor decomposition and Venn diagrams to find the HCF and LCM. (2) Using correct algebraic notation. Writing and simplifying expressions. Using the index laws. Multiplying and dividing expressions. Substituting numbers into expressions. Writing more complex expressions. Recognising the difference between a formula and an expression. Writing and using formulae. Using smaller numbers to identify patterns. Expanding brackets.	(4) Comparing fractions. Adding and subtracting fractions. Using fractions to solve problems. Finding a fraction of a quantity or measurement. Using fractions to solve problems. Using bar models to help solve problems. Multiplying whole numbers, fractions and mixed numbers. Simplifying calculations by cancelling. Dividing a whole number by a fraction. Dividing a fraction by a whole number or a fraction. Comparing fractions to decimals and vice versa. Using decimals to find quantities. Working out divisions with decimal answers. Writing one number as a fraction of another. Converting percentages to fractions and vice versa. Writing one number as a percentage of another. Converting percentages to decimals and vice versa. Finding a percentage of a quantity. Using percentages to solve problems. Calculating simple interest. Calculating percentage increases and decreases. Using percentages in real-life situations. Calculating VAT (value added tax). (5) Understanding and using inverse operations. Solving simple linear equations. Solving two-step equations. Solving linear equations with brackets. Solving equations with unknowns on both sides. Using correct notation to show inclusive and exclusive inequalities. Showing inequalities on a number line. Writing down whole numbers which satisfy an inequality. Solving simple linear inequalities. Solving two-sided inequalities. Substituting values into formulae and solving equations. Changing the subject of a formula.	(6) Solving geometric problems using side and angle properties of quadrilaterals. Identifying congruent shapes. Understanding and using angle properties of parallel lines. Finding missing angles using corresponding and alternate angles. Solving angle problems in triangles. Understanding angle proofs about triangles. Calculating the interior and exterior angles of regular polygons. Calculating the interior and exterior angles of polygons. Explaining why some polygons fit together and others do not. Solving angle problems using equations. Solving geometric problems showing reasoning. Using x for the unknown to help solve problems. (7) Calculating the mean from a list and from a frequency table. Comparing sets of data using the mean and range. Finding the mode, median and range from a stem and leaf diagram. Identifying outliers. Estimating the range from a grouped frequency table. Recognising the advantages and disadvantages of each type of average. Finding the mode, modal class and median from a frequency table. Estimating the mean of grouped data. Understanding the need for sampling. Understanding how to avoid bias.	(8) Calculating the perimeter and area of rectangles, parallelograms and triangles. Calculating a missing length, given the area. Calculating the area and perimeter of trapezia. Finding the height of a trapezium given its area. Converting between area measures. Calculating the perimeter and area of shapes made from triangles and rectangles. Calculating area in hectares. Converting between hectares and metres squared. Calculating the surface area of a cuboid. Calculating the surface area of a prism. Calculating the volume of a cuboid. Calculating the volume of a prism. Using the flow diagram to help solve problems. Converting between measures of volume Solving problems involving surface area and volume. (9) Finding the midpoint of a line segment. Recognising, naming and plotting straight line graphs parallel to an axis. Recognising, naming and plotting the graphs $y=x$ and $y=-x$. Generating and plotting coordinates from a rule. Plotting straight line graphs from a table of values. Drawing graphs to represent relationships. Finding the gradient of a line. Identifying and interpreting the gradient from an equation. Understanding what m and c represent in the equation $y=m x+c$. Drawing and interpreting graphs from real data. Using distance-time graphs. Drawing distance-time graphs. Interpreting rate of change graphs. Drawing and interpreting a range of graphs. Understanding when predictions are reliable. (10) Translating a shape on a coordinate grid. Using a column vector to describe a translation.	(11) Writing a ratio in its simplest form. Solving simple problems using ratios. Using ratios involving decimals. Writing and using ratios for shapes and their enlargements. Using ratios to convert between units. Dividing a quantity into 2 parts in a given ratio. Dividing a quantity into 3 parts in a given ratio. Solving word problems using ratio. Using bar models to help solve ratio problems. Comparing ratios. Writing ratios in the form $1: n$ or $n: 1$. Solving ratio and proportion problems. Using the unitary method to solve proportion problems. Working out which product is better value for money. Recognising and using direct proportion on a graph. Understanding the link between the unit ration and the gradient. Recognising the different types of proportion. Solving word problems involving direct and inverse proportion. (12) Understanding Pythagoras' theorem. Calculating the length of the hypotenuse in a right-angled triangle. Solving problems using Pythagoras' theorem. Calculating the length of a line segment AB. Calculating the length of a shorter side in a right-angled triangle. Solving problems using Pythagoras' theorem. Understanding and recalling the sine ratio in right-angled triangles. Using the sine ratio to calculate the length of a side in a right-angled triangle. Using the sine ratio to solve problems. Using the sine ratio to calculate an angle in a right-angled triangle. Understanding and recalling the cosine ratio in right-angled triangles.	(14) Calculating percentage profit or loss. Expressing a given number as a percentage of another in more complex situations. Calculating percentage profit or loss. Finding the original amount given the final amount after percentage increase or decrease. Solving problems involving compound measures. Converting between metric measures of speed. Calculating average speed, distance and time. Using formulae to calculate speed and acceleration. Using ratio and proportion in measures and conversions. Using inverse proportion. (15) Making accurate drawings of triangles using a ruler, protractor and compasses. Identifying SSS, ASA, SAS and RHS triangles as unique from a given description. Identifying congruent triangles. Drawing diagrams to scale. Using scales on maps and diagrams to work out lengths and distances. Solving problems involving scales. Accurately drawing angles and 2D shapes using a ruler, protractor and compasses. Constructing a polygon inside a circle. Drawing accurate nets. Bisecting angles and lines using a ruler and compasses. Finding the shortest distance from a point to a line. Drawing loci for the path of points that follow a give rule. Identifying regions bounded by loci to solve practical problems. Finding and using three-figure bearings. Using angles on parallel lines to work out bearings. Solving problems involving bearings and scale diagrams.

	Simplifying expressions with brackets. Writing and using formulae with brackets. Factorising algebraic expressions. Using the identity symbol \equiv and the not equal to symbol \neq Writing expressions and simple formulae. Using maths and science formulae. (3) Designing tables and data collection sheets. Reading data from tables. Using data from tables. Designing and using two-way tables. Drawing and interpreting comparative and composite bar charts. Interpreting and comparing data shown in bar charts, line graphs and histograms. Plotting and interpreting time series graphs. Using trends to predict what might happen in the future. Constructing and interpreting stem and leaf and back-to-back stem and leaf diagrams. Drawing and interpreting pie charts. Plotting and interpreting scatter graphs. Determining whether there is a relationship between sets of data. Drawing a line of best fit on a scatter graph. Using the line of best fit to predict values.	Knowing the difference between an expression, an equation and a formula. Recognising and extending sequences. Using the nth term to generate terms of a sequence. Finding the nth term of an arithmetic sequence.		Drawing a reflection of a shape in a mirror line. Drawing reflections on a coordinate grid. Describing reflections on a coordinate grid. Rotating a shape on a coordinate grid. Describing a rotation. Enlarging a shape by a scale factor. Enlarging a shape using a centre of enlargement. Identifying a scale factor of an enlargement. Finding the centre of enlargement. Describing an enlargement. Transforming shapes using more than one transformation. Describing combined transformations of shapes on a grid.	Using the cosine ratio to calculate the length of a side in a right-angled triangle. Using the cosine ratio to solve problems. Using the cosine ratio to calculate an angle in a right-angled triangle. Understanding and recalling the tangent ratio in right-angled triangles. Using the tangent ratio to calculate the length of a side in a right-angled triangle. Using the tangent ratio to calculate an angle in a right-angled triangle. Solving problems using an angle of elevation or an angle of depression. Understanding and recalling trigonometric ratios in right-angled triangles. Using trigonometric ratios to solve problems. Knowing the exact values of the sine, cosine and tangent of some angles. (13) Calculating probabilities from equally likely events. Calculating probabilities of mutually exclusive and exhaustive events. Solving probability problems. Working out probabilities from sample space diagrams. Drawing and using sample diagrams to solve probability problems. Estimating and interpreting probabilities based on experimental data. Making predictions from experimental data. Understanding the language of sets and Venn diagrams. Using Venn diagrams to solve probability problems. Solving problems using frequency trees and tree diagrams. Working out probabilities using tree diagrams. Understanding independent events. Understanding when events are not independent. Solving probability problems involving events that are not independent.	
Language for Life (Key terms/Vocabulary)	(1) Integer, number, digit, negative, decimal, addition, subtraction, multiplication, division, remainder, operation, estimate, power, roots, factor, multiple, primes, square, cube, even, odd. (2) Expression, identity, equation, formula, substitute, term, 'like' terms, index, power, collect, substitute, expand, bracket, factor, factorise, linear, simplify. (3) Mean, median, mode, range, average, discrete, continuous, qualitative, quantitative, data, scatter graph, line of best fit, correlation, positive, negative, sample, population, stem and leaf, frequency, table, sort, pie chart, estimate.	(4) Decimal, percentage, inverse, addition, subtraction, multiplication, division, fractions, mixed, improper, recurring, integer, decimal, terminating, percentage, VAT, increase, decrease, multiplier, profit, loss. (5) Arithmetic, geometric, function, sequence, nth term, derive, quadratic, triangular, cube, square, odd, even, solve, change, subject, inequality, represent, substitute, bracket, expand, linear, equation, balance, accuracy.	(6) Quadrilateral, angle, polygon, interior, exterior, proof, tessellation, rotational symmetry, parallel, corresponding, alternate, co-interior, vertices, edge, face, sides, triangle, perpendicular, isosceles, scalene, clockwise, anticlockwise, hexagons, heptagons, octagons, decagons, obtuse, acute, reflex, quadrilateral, triangle, regular, irregular, two-dimensional, three-dimensional, measure, line, angle, order, intersecting. (7) Mean, median, mode, range, average, discrete, continuous, qualitative, quantitative, data, sample, population, stem and leaf, frequency, table, sort, pie chart, estimate, primary, secondary, interval, midpoint, survey.	(8) Triangle, rectangle, parallelogram, trapezium, area, perimeter, formula, length, width, prism, compound, measurement, polygon, cuboid, volume, symmetry, vertices, edge, face, units, conversion. (9) Linear, graph, distance, time, coordinate, quadrant, real-life graph, gradient, intercept, function, solution, parallel. (10) Transformation, rotation, reflection, enlargement, translation, single, combination, scale factor, mirror line, centre of rotation, centre of enlargement, column vector, vector, similarity, congruent, angle, direction, coordinate, describe.	(11) Ratio, proportion, share, parts, fraction, function, direct proportion, inverse proportion, graphical, linear, compare. (12) Hypotenuse, surd, opposite, adjacent, sine, $\sin \sin \theta, \sin ^{-1}$, cosine, $\cos \cos \theta, \operatorname{tangent}, \tan \tan \theta$, elevation, depression. (13) Probability, dependent, independent, conditional, tree diagrams, sample space, outcomes, theoretical, relative frequency, fairness, experimental.	(14) Ratio, proportion, best value, proportional change, compound measure, density, mass, volume, speed, distance, time, density, mass, volume, pressure, acceleration, velocity, inverse, direct. (15) Construct, circle, arc, sector, face, edge, vertex, two-dimensional, three-dimensional, solid, elevations, congruent, angles, regular, irregular, bearing, degree, bisect, perpendicular, loci, map, scale, plan, region.
Extended writing Opportunities						After the end of year assessment pupils write a reflection based on the assessment.
Maths Across the Curriculum	(1) Factors is a concept that links to common morals or ideology which may arise in subjects such as religious studies, modern foreign languages, English language and literature, history and geography. (2) Pupils learn the fundamental concepts of algebra that are used in subjects such as biology, chemistry, physics, computer science and geography. (3) Scatter graphs are used in subjects such as geography and biology.	(4) Fractions, decimals and percentages are used in subjects such as food technology, geography, English, history, design and technology and media. Assessments across all subjects in the curriculum will be reported back to pupils as either fractions or most commonly percentages. Therefore, pupils will have the necessary skills to understand and evaluate their attainment. (5) Pupils use formulae and substitution in subjects such as physics, food technology and computer science.	(6) Lines and angles arise in subjects such as design and technology and physics. (7) Pupils learn statistical techniques that are used in many other subjects such as science, geography and psychology.	(8) Calculating areas, surface areas and volumes are needed in subjects such as science, geography and design and technology. (9) Interpreting the rates of change from graphs is a technique used in subjects such as physics and geography. Distance time graphs are used to help describe motion in physics. (10) Transformations can be used in subjects such as art, photography and design and technology.	(11) Ratios and proportionality arise in subjects such as food technology, design and technology, science and geography. (12) Trigonometry is used in physics to calculate components of forces. (13) Experimental probabilities are used in scientific experiments and field research in geography.	(14) Interest rates are used and calculated in GCSE Business Studies. (15) Constructions can be used to create precise triangles in subjects such as art or design and technology.

Links to careers/ aspirations	(1) Pupils will acquire key skills for careers in finance and accounting. (2) Pupils learn the fundamental concepts of algebra that are used in careers involving astrology, architecture, computer engineering, market research analysis, finance and economy. (3) Pupils learn to use fundamental statistical techniques that are widely used in a range of professions from sports commentator to community management.	(4) Understanding how to calculate prices with VAT is essential for roles in business management. Fractions are imperative in the fields of data analysis, community management and journalism. Computer programmer, statistician, actua ry, quantitative analyst, scientist, economist, urban planner, lawyer and judge all require at least some knowledge or use of fractions. (5) Solving equations is a skill used by business managers, financial analysts and computer programmers.	(6) Pupils learn how to accurately draw angles which is a key skill in drawing plans in architecture. (7) Sampling populations is a key statistical skill used across many fields of work such as pharmaceuticals, community management and manufacturing.	(8) Volumes of 3D shapes must be calculated by people in product design for items such as bottles. (9) Graphs are the visual representation of data. Graphs are used for statistical analysis, to make complex mathematical concepts easier to understand. Although many professionals use graphs in their work, science and mathematical occupations use graphs extensively. (10) Transformations are used by some professional artists whose artwork relies upon transformations such as enlargement and rotation.	(11) Proportion is used by chefs and manufactures of food products. (12) Trigonometry is used in oceanography in calculating the height of tides in oceans. The sine and cosine functions are fundamental to the theory of periodic functions, those that describe the sound and light waves. (13) Probability is used in careers that involve forecasting for things such as weather or sales.	(14) Percentages are used in discounts in shops, bank interest rates, rates of inflation and statistics in the media and therefore link to fields such as retail, journalism, finance and statistical analysis. (15) Loci can help architects and interior designers to account for any logistical discrepancies in their designs, whilst it can be used by software developers and game programmers in the development of video games.
Cultural Capital	(1) Estimating is an important part of our everyday experience, from budgeting to making sense of problems and persevere in solving them. Without estimation skills, pupils would not be able to determine if an answer is within a reasonable and acceptable range. (2) Pupils learn about scientific formulas such as the relationship between speed, distance and time or the relationship between final velocity, initial velocity, acceleration and time. (3) Pupils learn how to interpret time series graphs which they may see used when researching about the fluctuations of prices of shares, currencies or consumables.	(4) Pupils can use their understanding of fractions to better understand the statistics and likelihoods they are exposed to through media. (5) Pupils are exposed to a method of solving linear equations known as balancing. This idea can be used as a template for pupils to understand social distress with regards to issues involving equality. By understanding that with equations, like forces in physics, one action must have an equal and opposite action to maintain balance.	(6) Pupils learn the connection between the construction of shapes and a full rotation through the formula calculating the exterior angle of any n sided polygon. (7) Pupils learn that statistics can be misleading which will better prepare them to think independently when exposed to advertising and marketing campaigns across social media clubs.	(8) Proving that two triangles are congruent allows pupils to understand the difference between knowing a point or hypothesis themselves and providing a logical and reasoned explanation to allow others to understand too. This skill translates across all stages of life from essay writing to collaboration with colleagues in the workplace. (9) Understanding graphs can aid pupils in understanding information relayed to them from retailers or price comparison sites. Allowing them to make better informed decisions. (10) Pupils can learn to appreciate forms of art that specifically specialise in the use of transformations.	(11) Multiplicative reasoning skills are applied when converting from one currency to another and when calculating winnings on a bet. You can use multiplicative reasoning to calculate the cost of food and drinks you need for a party as well as the recipe to prepare a certain meal. (12) Pupils learn about the presence of Mathematics throughout history as Pythagoras' theorem dates to the $6^{\text {th }}$ century $B C$. (13) Venn diagrams are often used in decision making where there is a need to see a visual comparison of the advantages, or disadvantages or multiple options.	(14) Pupils learn how to calculate percentage change. This empowers pupils to be better informed when shopping. They can independently assess whether the reduction offer on a product they may be interested in buying has been accurately advertised in terms of its percentage reduction. (15) Studying construction allows pupils to broaden their appreciation for architecture. Every building such as schools, libraries, houses, apartment complexes, and movie theatres, is the product of mathematical principles applied to design and construction. Before construction workers can build a habitable structure, an architect must design it. Architects apply their construction and drawing skills to plan their blueprints or initial sketch designs.
Practical Application of Skills	(1) Pupils can use their understanding of estimation when shopping in the grocery store and trying to stay within a budget, for example, you estimate the cost of the items you put in your cart to keep a running total in your head. (2) Pupils can use their understanding of equations and formulae to better understand how they are billed for electricity, gas, water, a meal at a restaurant or an Uber journey. (3) Pupils can use their ability to draw time series graphs to follow trends in their day-to-day life, such as mobile phone usage and time spent revising to aid them in identifying if a change in routine is necessary.	(4) Pupils learn how to calculate a VAT which can help them to calculate the total cost of their items when shopping in shops that do advertise the price of items without their VAT. (5) Pupils can substitute values into real life formulae such as converting the temperature in degrees Celsius to degrees Fahrenheit	(6) Pupils can use their understanding of interior angles when organising furniture in a room. For example, they will be able to identify if tables can be placed together without a space between them. (7) Pupils can decipher whether a given statistic witnessed in advertising is misleading.	(8) Pupils can use their understanding of surface areas to inform purchases such as wrapping paper and paint. (9) Pupils will have a better understanding of using graphs to make predictions reliably when interpreting graphs of the cost of energy from different suppliers. (10) Pupils can use their understanding of scale factors to enlarge images on software without distorting the image.	(11) Pupils can use their understanding of multiplicative reasoning for tasks such as exchanging between currencies and adapting recipes. (12) Pupils can use Pythagoras' theorem to calculate or verify the size of a television as it is always the diagonal length that is advertised. (13) Experimental probability will provide pupils with a better understanding of why when they roll a dice 6 times they don't always get at least one 5 , despite the probability of rolling a 5 being 1 out of 6 .	(14) Inverse proportion can be used to estimate how long a task will take if the number of people completing the task is increased. (15) Loci teaches pupils to problem solve by satisfying an array of requirements. This methodology can be translated to everyday problem solving such as positioning of furniture in a room or garden.

